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This is a brief review of thecurrent situationconcerningpracticalpseudorandomnumbergenerationfor Monte Carlo
calculations.The conclusionis that pseudorandomnumbergeneratorswith therequiredpropertiesarenow available,but the
generatorsactuallyusedareoften not good enough.PortableFortrancode is givenfor threedifferentpseudorandomnumber
generators,all of which have much better propertiesthan any of the traditional generatorscommonly supplied in most
programlibraries.

PROGRAM SUMMARY

Title ofprogram: PSEUDORAN Methodof solution
Three different methods are proposed, eachof which gives

Cataloguenumber:ABTK independentpseudorandomnumbersequenceswith very good
properties.

Program obtainable from: CPC Program Library, Queen’s
University of Belfast, N. Ireland(see applicationform in this Restrictionson thecomplexityof theproblem
issue) Thegeneratorsproposedhereall produce32-bit floating-point

numbersuniform betweenzero and one. The simplestgenera-

Computerfor which theprogram is designed:It shouldgive the tor proposed has a period of about 1018, which could
sameresultson any computerwith a Fortran 77 compiler, and conceivablybe too short for someexceptionalcalculations,but
has been tested on Apollo 3500 and Apollo 10000 (RISC) the othershave muchlonger periods.
under SrlO Unix, CrayX-MP under Unicos, IBM 3090 under
VM/CMS/XA, andVax 8600 under VMS Typical running time

The speedof these generatorsis comparableto, and in some

Programminglanguageused: Fortran77 casesfaster, than traditional hand-codedgenerators.Timings
are given in the long write-up of the article. They could of

No. of lines in combinedprogram and test deck: 367 course be speededup further at the cost of making them
nonportable.

Keywords:randomnumbers,pseudorandom,uniform distribu-
tion, long period, independentsubsequences Unusualfeaturesof theprogram

Thesegeneratorsare completelyportable (both the code and
Natureof physicalproblem thenumbersproduced),and aresuitablefor parallelandvector
Any MonteCarlocalculationrequiringuniform pseudorandom processingaswell astraditional applications.
numbers.

0010-4655/90/$03.50© 1990 — Elsevier SciencePublishersB.V. (North-Holland)



330 F. James/ A reviewofpseudorandomnumbergenerators

LONG WRITE-UP

1. General considerations

1.1. The motivationand scopeof thispaper

Physicistsoften needvery good randomnumbergeneratorsfor Monte Carlo calculations,but seldom
feel the needto spendany considerableeffort to assurethemselvesof the quality of the generatorsthey
use.Unfortunately,even thoughthe generatorsavailableat mostcomputercentreswere consideredgood
whenthey were first installed, it is unlikely that a generatorof twenty or even ten yearsago will continue
to meet the requirementsof today’s increasinglylong and complex calculations.Indeed the history of
Monte Carlo computationhas beenmarked, from the earliestdays right up to the present,by physicists
making the painful discovery that their calculationsare unreliable becausethe local random number
generatordid not have the properties required of it. I will spare many readers from unpleasant
recollectionsby not citing the many internal reports devotedto the revelation that the local “official
randomnumbergenerator”is not randomenough.

Recentprogressin both theoreticalunderstandingand practical implementationof randomnumber
generatorshasbeensuchthat it is now possibleto find an appropriategeneratoravailableoff theshelf for
nearly any practicalcomputation.The purposeof this review is to summarizethe requirementsfor a good
generator, and to give examplesof generatorsfulfilling theserequirements.It is up to the individual
physicists to makesure that the one they use (and preferably the default at their computercentre) is
appropriatefor their calculations.

Only uniform generatorsare coveredhere.Thereexist in additionan enormousnumberof techniques
for generatingrandomnumbersaccordingto otherdistributions,for exampleGaussian,Poisson,binomial,
exponential,etc. Most of thesetechniquesrequire a good uniform generatorunderneath.

1.2. The three typesof generators

Randomnumbergeneratorsfor Monte Carlo calculationscanbe classifiedaccordingto the threetypes
of numbersgenerated:

• Truly random numbersare unpredictablein advanceand must be producedby a randomphysical
process,such as radioactivedecay.Seriesof suchnumbersare availableon magnetictapeor published
in books,but they are extremelyclumsy to use and are generally insufficient in both numberand
accuracyfor seriouscalculations.They are not discussedhereany further.

• Pseudorandomnumbers are produced in the computerby a simple numerical algorithm, and are
thereforenot truly random,but any given sequenceof pseudorandomnumbersis supposedto appear
random to someonewho doesn’t know the algorithm. Theseare the most commonly usedand are
discussedbelow.

• Quasirandomnumbersare also producedby a numericalalgorithm, but are not designedto appearto
be random,but ratherto be distributedas uniformly as possible,in orderto reducethe errorsin Monte
Carlo integration. They are not appropriate for all Monte Carlo calculations, but can be highly
advantageouswhere appropriate.Theseare not discussedin this paper,but will be the subjectof a
futurepaper.

1.3. Desirablepropertiesof a randomnumbergenerator

The first propertygiven below(gooddistribution)is importantfor all calculations.The otherproperties
are not always needed,but a good generalpurposegeneratorshouldpossessthemall.
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1. Good distribution. For pseudorandomnumbers,this meansgood randomness.For quasirandom
numbers,thedesiredquality is uniformity. The exactmeaningof thesetermsin the contextof thispaperis
discussedbelow.

2. Long period. Both pseudorandomand quasirandomgeneratorsalwayshavea period, after which
they begin to generatethe samesequenceof numbersover again. In any particular calculation, it is
dangerousto comeanywherenearexhaustingthe period, especiallyfor pseudorandomgenerators.In the
earlydays it wasbelievedthata longperiodwassufficient also to guaranteea good distribution,but this is
now known not to be true in general.Traditional pseudorandomgeneratorsare basedon a singleinteger
“seed”, whichmeansthat the periodis limited to the numberof different statesthat canbe representedin
one computerword. For practical reasons,two bits are usually lost (for positivity and to avoid even
integers),so for a 32 bit computera simplegeneratorcan havea maximum periodof 230 or about i09.
Although it is easyto achievethis maximum, it is no longer enoughfor many presentday problems.
Traditional methodscan be extended,evenon 32-bit computers,to give periodsequal to the numberof
statesrepresentablein 60 bits. Somemodernmethodshaveperiodsmuch longer than 260; thesemethods
will be referredto as VLP (very long period)methods.

3. Repeatability.Thereare really two aspects:
• For testinganddevelopment,it maybe necessaryto repeata calculationwith exactlythe samerandom

numbersas in the previousrun. Nearly all generatorsdo this by default, the only exceptionbeing those
few that introducean elementof true randomnessby initializing to an externaldevice like the system
clock.

• A somewhatmore tricky case,againarising in programtesting, is to be able to repeatpart of a job
without redoing the whole thing. For example,in eventsimulation, if eventnumber368 provokesan
exception,onewantsto be ableto studyit againwithout regeneratingthe first 367 events.As a general
rule, this requiresrecordingthe stateof the generatorat thebeginningof eachevent, which for simple
generatorsmeansonly rememberingone number, the seed.More complexgeneratorsrequire storinga
largeramountof information; oneof the generatorsrecommendedbelowneedsavectorof 100 fullword
numbersto defineits stateat any moment,althoughonly one32-bit integeris requiredto initialize it.

4. Long disjoint subsequences.For large problems,particularly thosebeing solved by a large team of
physicists simultaneously,it is extremelyconvenientto be able to perform independentsubsimulations
whoseresultscanlaterbe combinedassumingstatisticalindependence.Noneof thetraditional generators
allowsthis to be doneconveniently.The traditional techniquefor continuinga calculationis to record the
valueof the “seed”, giving the currentstateof the generator,at the endof eachsubcalculation,and feed
that into the next subcalculationto restartthe generatorwhereit left off. This techniquedoesnot allow
onesubcalculationto start beforethe previousonehas finished,andalso requiresconsiderableinconveni-
entbookkeepingandperhapsinterteamcommunication.Someof the generatorsproposedbelowsolve this
problem.

5. Portability. This meansnotonly that the codeshouldbe portable(i.e. in a high-level languagelike
Fortran),but that it shouldgenerateexactlythe samesequenceof numberson differentmachines,in order
to verify that the programsgive the sameresultson different machines,at least to within the machine
accuracy.Of course,certainkinds of calculations,in particularthoseinvolving brancheswhich dependon
the results of floating-point calculations, may give very different results due to different hardware
arithmeticaccuracy,evenif the randomnumbersare rigorously identical,so thecomparisonmaynotwork
for programsof this kind.
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6. Efficiency.This was consideredveryimportant in the early days,but with the kind of computations
beingperformednow, both thecomputertime andmemoryspacetakenby randomnumbergenerationare
increasinglyinsignificant andcanalmostalwaysbe neglected.In fact, the way randomnumbergenerators
are traditionally implemented,asFortran functionsreturningonerandomnumberpercall, the CPU time
is usually dominatedby the time to make the function call, so the actual calculation time for the
generationis seldomof any importance.

If CPU time for randomnumbergenerationis a problem,thereare only two ways to get aroundit: (1)
by coding the randomnumbergeneratorinline, or (2) by implementing the generatoras a subroutine
which returns an array of random numbersat each call. Method (1) may be worthwhile in specialized
applications,butmay not be convenientin big programswherethe randomgeneratoris calledfrom many
places.Method (2) is always to be recommendedsince the penalty to the userwho can handleonly one
numberat a time is small comparedwith the gain to the cleveruser.

Moreover, it is important to note that in vector computers, even if the time spent in the generator is
negligible, the abovetechniquescan still result in enormousoverall timing improvements,sinceotherwisea call
to the randomgeneratorin a loop will preventany vectorizationof the ioop.

1.4. Manufacturer-suppliedgenerators

It has beentraditional to use pseudorandomnumbergeneratorssuppliedby the manufacturersof the
local computer.Thereare many reasonsfor this, but mostof them are no longer valid. The main reason
wasprobablyblind faith in the superiortechnicalexpertiseof the manufacturerandthe belief that a good
generatormustbe written in assemblerandexploitparticularhardwarefeaturesof the machinein order to
be efficient. Many usersarealso influencedby the vaguefeeling that a sequencecanbe randomonly if it is
producedin a mysteriousway, codedin an unknownlanguagewhosesourceis not available.

Given the current stateof the art, there is practically no reasonto use manufacturer’ssoftware for
random number generation, the possible exception being those (supercomputers)which offer good
generatorsand compilerswhich producein-line code. On the other hand, evenbetter (but not faster)
generatorsare now availableto anyonein Fortran,offering in additionportability, which no manufacturer
offers.

2. Pseudorandomnumbers

Theseare the general-purposerandomnumberstraditionally used for most Monte Carlo calculations.

2.1. Testinggooddistributions

Zaremba[1] haspointedout that

As far as pseudorandomnumbers are concerned, the traditional term “tests of randomness” is a
misnomer. Surely, in contrast to their name, the object of such testsis not the randomorigin of the
sequences,since this would amountto testinga hypothesisknown to be false.

Indeed, pseudorandomnumbers are not truly random, and it turns out to be very difficult if not
impossibleto makea mathematicallyrigorousdefinition of pseudorandomness(See, for example,Knuth
[2] who has a good discussionof thisphilosophicalpoint).

Nevertheless,we somehowhaveto expressthe fact that pseudorandomnumbersshouldappearto be
truly random, even if they are not, and for want of a better word, we shall call this property
“randomness”,not to beconfusedwith the moreusualdefinition, used for exampleby Zaremba,which we
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distinguishby the name“true randomness”.More concretely,we take“randomness”in this senseto mean
that a sequenceof pseudorandomnumbersshouldhavethe sameprobabilityof passinga “statistical test”
as truly randomnumberswould have. (Not better!) A statistical test may be basedon the valueof any
function of the sequenceof pseudorandomnumbers.It is sufficient that the expecteddistribution of that
valuebe known (or calculablenumerically) for a truly randomdistribution, thenby consideringthe value
of the function for the given pseudorandomsequence,comparedwith the known expecteddistribution of
that valuefor truly randomnumbers,oneobtainsa confidencelevel for the test. If many testsare applied
and the confidencelevels are calculatedcorrectly, andif the testsare independent,the confidencelevels
shouldbe uniformly distributedbetweenzero and one if the pseudorandomgeneratoris “good”. The
formal difficulty arisesmostly from the fact that the numberof possibletestsis uncountablyinfinite, and
in additionthey areof coursenot all independent.

Over the years, considerableexperiencehas indicated what kinds of tests are likely to find the
weaknessesof typical generators,and moderntestsare much morestringent thanmostof the older ones.
Modem generatorsare expectedto passall theold testsas well as thosetestswhich traditional generators
are known to fail. Probablythe mostextensivepresentationof pseudorandomnumbertestingis given by
Knuth [2], but shouldbe updatedby the more severetestsgiving in ref. [3]. A good exampleof how to
apply suchtestssystematicallyis ref. [4]. Randomnumbertestingwill not befurther discussedhere,except
to mention that any pseudorandomgeneratorlikely to havea “lattice structure”(see below) shouldbe
subjectedto the “spectraltest”, a simpleexampleof which is given in ref. [5].

2.2. Pseudorandomgenerationmethods(simplegenerators)

We definea simplegeneratoras onefor which the maximumperiod is limited by thenumberof states
that canbe representedin onecomputerword(wherea computerword is definedasthe entity uponwhich
the local computerlikes to perform its integerarithmetic). Thus, as mentionedabove,for the popular32
bit computers,simple generatorsare limited to a period of about ~ The generalpurposegenerators
recommendedbelow combine two or more simple generatorsto attain a longer period and better
distribution.

In recentyears,threeclassesof simplegeneratorshavebeenusedmostextensively.Theseare generally
known as multiplicative linear congruential (MLCG), Fibonacci, and shift register (also known as Taus-
worthe) generators.They all havesevereweaknesses,but wheneverit is known how to get around them,
the weaknessesare known as “theoretical understanding”.

2.2.1. MLCG
Themultiplicativelinearcongruentialgenerator,first usedin 1948 by D.H. Lehmer,is oneof theoldest,

and probablystill the bestsimplegenerator,eventhoughit hasa well understoodweakness.In the basic
MLCG method, eachsuccessiveinteger is obtainedby multiplying the previousone by a well chosen
multiplier, optionally addinganotherconstant,and throwing away the mostsignificantdigits of the result:

s~+i= (as1+ c) mod m

where a is the well chosenmultiplier and m is usuallyequalto or slightly smallerthan the largestinteger
that can be representedin one computerword. The constant c can be chosenequal to zero, which
simplifies the method somewhatand producessequencesabout as good as any other,but thenan exact
zero cannotbe generated,andthe choiceof botha and m maydependon c.The integerseedss, mustbe.
convertedto floating-point numbersin the range (0,1) by dividing by m.

Marsaglia[6] discoveredand explainedthebasicweaknessof this method:If d-tuplesof suchnumbers
are usedto representpoints in d-dimensionalspace,then thesepointshavea lattice structure,that is they
all lie on a certain numberof hyperplanes,far less than the largest possiblenumberwhich would be
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expectedof a truly randomsequence.Sinceit hasbeenknown for a long time how to get sequencesof
maximumperiod (thenecessaryandsufficient conditionsaregiven, for example,in ref. [2]), the searchfor
good multipliers is essentially reduced to maximizing the numberof hyperplanes,for simple MLCG
generators.The so-called“spectral test” [5] is the bestway of analyzingthe hyperplanestructureof any
MLCG.

The basic MLCG method should be portable when written in a languagelike Fortran,but in its
simplestexpressionit requiresmultiplying ratherlongintegers,andmany implementationsmakeuseof the
convenientpeculiarityof many arithmeticunits which simply throw away the mostsignificantdigits when
an integeroverflow occurs.Suchcodeis of coursenot portable,but l’Ecuyer [4] showshow to write this in
a guaranteedportableway, evenwhen m is not a powerof two.

Somefamousmultipliers
Eventhough,in the wordsof Niederreiter[7], “There is no suchthingas a universallyoptimalmultiplier “,

we list herea few of the betterknown multipliers whichhavebeenusedin simpleMLCGs, with comments
as to how good they are now generallyconsideredto be. It shouldbeborne in mind that all the methods
given below, except (7), are limited to a period of less than iO~,so none are good enough for long
calculations.Exceptwherenoted,all the multipliers given below areusedwith c = 0.

1. a = 23, m = 108 + 1: This is the original formula usedby Lehmerin 1948, andis not very good by
today’sstandards,althoughthe higherordercorrelationsare not as badas for the following generator.The
constantswerechosenmainly to exploit hardwarepeculiarities,which wasimportant in thosedays.

2. a = 65539, m = 229: This is the infamousRANDU, suppliedby IBM in the earlydaysof their 360
series,and was basedon a theoreticalexpressionwhich showedthat this multiplier shouldproducethe
smallestpossibleserialcorrelations.Unfortunately,it turns out to havecatastrophichigher-ordercorrela-
tions,which many usershaveobserved.We now know that any multiplier congruentto 5 mod 8 (that is,
whosebinary representationendsin . .. 101) would havebeenbetter,but this wasnot known at the time.

3. a = 69069, m = 232: This popularmultiplier hasbeenused in manygenerators,probablybecauseit
was stronglyrecommendedin 1972 by Marsaglia.In particular, it is the multiplier in RN32, a generator
proposedby James[8] for applicationswhich mustbeportablebutdo notrequirevery longsequences.It is
also the multiplier for the Vax generatorMTH$RANDOM, whereit is usedwith c = 1. It is in fact quite
good for such a small multiplier, its main weaknessshowingup only in 6 or more dimensions,but
accordingto somecriteria, it is far from optimal (see,for exampleref. [2], p. 104, andref. [7], p. 1026). Its
bestpropertyis that it is easyto remember.

4. a = 75 = 16807, m = 231 — 1: Thisgeneratorwasalso developedby IBM for its system/360, whereit
is knownas SURAND. It wasproposedon the basisof the stateof the art in 1968,just after the discovery
of hyperplanesby Marsaglia, and although acceptablefor most calculations,it is surely not the best
multiplier, probablynotevenas good as 69069.

5. a = 1664525,m = 232: This is the bestmultiplier for m = 232, accordingto the criteria of Knuth [2].
It is usedin the INMOS TransputerDevelopmentSystem(IMS D700D).

6. a = 742938285, m = 231 — 1: According to the criteria of l’Ecuyer [4], this is the best simple
algorithm, but is not easily madeportable. His best “portable” constants(see RANECU below) are
a = 40014, m = 2147483563,and a = 40692, m = 2147483399.
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7. a = 515, m = 2~~:This is a traditional CDC generator,making use of the 48-bit integerarithmetic
usedon their 60-bit machines.The long word gives a long period~ 1013) andverygood distribution.Do
not trust the low-order bits however.

2.2.2.Fibonacci
A Fibonacciseriesis onein which eachelementis the sumof the two precedingelements.A Fibonacci

randomnumbergeneratoris a generalizationin which eachnumberis computedby performingsome
operationon the two precedingnumbers, the usual operationsbeing addition, subtraction,and the
“exclusive-or” operation.Since simple Fibonacci generatorsare not very good, one always uses lagged
Fibonaccisequences,in which eachnumberis the result of anarithmeticor logical operationbetweentwo
numberswhich haveoccurredsomewhereearlier in the sequence,notnecessarilythe last two:

= (sj_pOsi_q)mod m,

where0 is somebinary or logical operation,and p and q are the lags,definedsuch that p> q. Thereis
very little theoryaboutthe distributionsof suchpseudorandomsequences,but oneknows how to calculate
the period, andit is possibleto generatequite longsequencesin this way. Marsagliagives a good reason
why 0 shouldbe ordinaryaddition or subtraction,but not exclusive-or,becauseunder the exclusive-or
operation,a bit in a givenposition in the result dependsonly on the two bits in the sameposition in the
two operands,whereasadditionandsubtractionproducesomeactualmixing of the bits.

Thebasictheoreticalresult concerninggeneratorsof this type is that if p and q are chosenamongthe
set givenref. [2], then the period is (2 ‘~— 1)(2~~‘). Oneinterestingfeatureof Fibonaccigeneratorsis that
they canwork (evenportably) directly with floating-pointrepresentationsof numbers,without theneedto
convertintegers.Examplesare given below.

In spite of the extensivelack of theoreticalunderstanding,Fibonaccigeneratorsare the basis of the
generatorsrecommendedby both Knuth [2] and Marsaglia[9]. The latter is RANMAR, describedand
recommendedbelow.

2.2.3. Shift register or tausworthe
Thisclassof generatorsis basedon the sameformula as laggedFibonaccigenerators,but with m = 2,

so that only individual bits are generated,which are then collected into words, making use of a shift
register,whencethe name.The operator0 is invariably the exclusive-or,which leavesthesegenerators
opento the copiouscriticism of Marsaglia[3,10],who gives examplesof badgeneratorsof this type.They
have, however,beenthe subjectof considerableinterest,and thereseemsto be no proof that a good
generatorcannot be basedon this method. In particular, people at IBM [11,12] haveproduced such
generatorswhich although not portable, are very fast, havean arbitrarily long period, and haveso far
performedwell in tests.

2.3. Improvingsimplegenerators

2.3.1. Generaltechniques
The needfor pseudorandomnumbergeneratorsof usefulperiod greaterthan iO~is obviousfrom the

fact that thereare now several models of widely available computerswhich can generatethat many
numbersin a few minutes. If we assumethat computercycle times will not descendmuch below a,
nanosecondin the coming years,it is reasonableto aim for good generatorswith usefulperiodsof the
orderof the numberof nanosecondsin a year,or about n X 1016. Since260 1018 is somewhatlarger than
this limit, it shouldbesufficientto combinetwo 32-bit generatorsif it canbe donein sucha way as to get
theequivalentof a 64-bit generator.
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It is not entirely obvious how to improve a bad generator.Probably the most common mistake is to
think that correlationslike the Marsagliaeffect in MLCG are due only to the “regular” way that the
randomnumbersare used (a fixed numberof them per loop), and so things should improve if we
occasionallythrow away a fewnumbers.Of coursethe primaryeffect of sucha techniqueis to shortenthe
period rather than lengthenit, but apartfrom this, such a techniquecan be expectedto improve the
randomnessonly if the decisionwhen to throw away a numberis not basedon the generatoritself. This
shouldbe obvioussinceany attemptto use a badgeneratorto improve itself will introducemodifications
which will becorrelatedwith the very defectoneis trying to eliminate.The exactoutcomemay be hardto
predict, butoneshouldhardly besurprisedif it makesthingsworseinsteadof better. Considerationssuch
as theseleadto thefollowing guidelinesfor improvinga simple generator:

• Do not throw awayor wasterandomnumbersin order to improvea generator.This mainly shortensthe
period.

• Do notuse the simplegeneratoritself in the algorithmto improve it. Introducesomenew randomness
by usingadifferent (hopefully independent)randomnumbergenerator,evenif it is not very good.

Thereare two commonlyusedmethodsfor improving a generatorby using a secondgenerator,where
onecan show that the new generatorwill be morerandomthan the original provided the two generators
are independent.

• Shuffling usesthe secondgeneratorto choosea randomorder for the numbersproducedby the first
generator.This is doneby first filling a buffer of a given size from the first generator,then usingthe
secondto chooseoneof thesenumbers,replacingit by thenext in the first sequence.Sucha technique
is particularly useful for quasirandomnumbers,wherethe original sequencehassomepropertysuchas
equi-distributionwhich one wants to preserveglobally but disturb locally. It is not very efficient for
pseudorandomnumberssinceit doesnot usemuchof the randomnessof the secondsequence,all of the
actualnumberscoming from thefirst.

• Bit-mixing actually combinesthe numbersin the two sequencesusing some logical or arithmetic
operation.If the two original sequencesare denotedby s and t, then the new sequencer is given by

= s1Ot,,where 0 wastraditionally alwaysthe exclusive-oroperation,but for reasonsgiven abovein
connectionwith Fibonaccigenerators,ordinaryaddition or subtraction,moduloone, is now preferred.

2.3.2. Extensionsto particular algorithms
In addition to the general techniquesmentionedabove,most simple generatorsallow intrinsic exten-

sions which will improve their distributions at the expenseof addedcomputationtime and space.For
example,thepopularMLCG generatorcanbeextendedfrom

s,+~= (as,+ c) mod

to

s~+~= (as1+bs~1+c) mod m

which is known to increasethe maximumnumberof Marsagliahyperplanesto the numberwhich would be
obtainedfor the simpler formula in half the numberof dimensions.To use the secondformula requires
carefully choosingtwo multipliers a and b. If this is still not good enough,further improvementcan be
obtainedby addingstill moretermsto the formula andfinding additionalgood multipliers.

2.3.3. Very longperiod(VLP) methods
Techniquesof the typedescribedabovenecessarilyinvolve an increaseof computationtime in order to

lengthenthe period, with the time increasinglike the log of the period for long periods.This is acceptable
for attaining modestimprovements,but a new classof algorithmsis neededfor verylong periods.
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Thegeneraltechniquefor VLP generators(for example,RANMAR andACARRY, describedbelow) is
as follows:

• An internal table is set up, containing a large numberof seeds(typically betweenten and a few
hundred),and the values of a few indices (typically two) pointing to seedsin the table, are also
initialized.

• A pseudorandomnumberis generatedby combining only thoseseedscorrespondingto the current
valuesof the indices.

• The seedsjust usedare updatedasin simplemethods,andthe indicesare incrementedto point to other
seeds.

The amount of computation involved in such a method is only about twice as much as for the very
simplestmethods,but the periodis now limited notby thenumberof statesrepresentablein one or two
words,but in the entiretable,which canbe madeaslargeasnecessary.For simplicity of use, the original
initialization of the seed table is usually basedon a single integersupplied by the user, which startsa
simple MLCG generator.On the other hand,if it may be requiredto restartthe generationfrom any
arbitrarypoint, then the full seedtableat that point mustbe saved,along with the index values.

3. Acceptable pseudorandomgenerators

3.1. The McGill generatorsuper-duper

In the mid 1970sthe needfor generatorsof longer period for 32-bit computerswas alreadybecoming
apparent,andthis gaverise to the first widely distributedcombinedgenerator,written by Marsagliaand
co-workersat McGill University. It combinesa MLCG and a shift-registergenerator,andis written in
IBM assembler,sois notportable,but is now usedat many IBM sites.In the CERN ProgramLibrary it is
known asRNDM2. It is packagedin thetraditional way, as a function returningonerandomnumberat a
time, and is initialized by two 32-bit integerseedswhich must be chosenwith care, so it is not easyto
generatesimultaneousindependentsequences.

This is by far the bestof any of the traditional generatorscommonlyusedon IBM mainframestoday,
but Marsaglianow suggeststhat in the assemblercode, the “exclusive-or” operation for combiningthe
generatorsbe replacedby a simple“add” instruction. Even then it will not be quite as good as those
describedbelow, and is of coursenot portable.

3.2. RANECU: thealgorithm ofl’Ecuyer

L’Ecuyer[4] describesthe currentstateof the art in MLCG methodsandshowshow to makeportable
generatorsby doingintegerarithmeticin such a way that bothoperandsandresultsare guaranteedto stay
within the rangeof 32-bit (or 16-bit) computers.He finally recommendsa method which combinestwo
simple MLCG’s for 32-bit computers,and threesimple MLCGs for 16-bit machines.The periodsare

2 x 1018 and 1012, respectively.
For maximumperiod, the different valuesof m in onegeneratormust be the largestrelatively prime

numberswhichcanfit in oneword, andfor portability the multipliers mustbe less than ~ L’Ecuyer[4]
shows how to find the best constantssatisfying theseconstraintsand gives the actualPascalcodeto
implementthe mehtods.(The factthat theyare given in Pascalshouldnot betakenasanindication that
they areintendedonly for toy applications.A Fortran adaptationis given here.)

By traditional standards,this generatoris relatively slow, the 32-bit versionrequiring for eachnumber
generatedtwo integer divisions, six integer multiplications, and severaladditions, of which threeare
conditional.However,on all machinesI havetried, thepurecalculationis comparablewith the time to set
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up the function call alone,so if implementedsuch that eachcall returnsa vectorof randomnumbers,it
becomesabout as fast as traditional hand-codedalgorithms(some timings are given below for those
interested).

I seeonly two very minor drawbacksto this method.The least importantis that the numbersgenerated
on different machinesare notbit-identical,but are only equal to the accuracyof the machinearithmetic.
This is becausethey are normalizedby multiplying by the inverseof a very large odd integer, and this
inversecannotberepresentedexactlyin binary. The othersmall problemis that it is not very convenient
for generatinglong disjoint subsets,although l’Ecuyer does indicatehow it can be done by calculating
valuesof a’ for largeandwell-separatedvaluesof i. He gives a referencewheresomevaluesare tabulated.

The following Fortran codeis the generatorrecommendedby l’Ecuyer for 32-bit machines,translated
from Pascalandadaptedto generatean arrayof numbersin one call:

SUBROUTINE RANECU (RVEC,LEN)
C Portablerandomnumbergeneratorproposedby l’Ecuyer
C in Commun.ACM 31(1988)743
C slightly modified by F. James,1988, to generatea vector
C of pseudorandomnumbersRVEC of length LEN

DIMENSION RVEC( *)
SAVE ISEED1,ISEED2
DATA ISEED1,ISEED2/ 12345, 67890/

C
DO 1001= 1,LEN
K = ISEED1/53668
ISEED1 = 40014 * (ISEED1 — K * 53668)— K * 12211
IF (ISEED1 .LT. 0) ISEED1 = ISEEDI + 2147483563

C
K = ISEED2/52774
ISEED2= 40692 * (ISEED2— K * 52774)— K * 3791
IF (ISEED2 .LT. 0) ISEED2= ISEED2+ 2147483399

C
IZ = ISEED1 — ISEED2
IF (IZ .LT. 1) IZ = IZ + 2147483562

C
RVEC(I) = REAL(IZ) * 4.656613E-10

100 CONTINUE
RETURN

C
ENTRY RECUIN(IS1,1S2)
ISEED1 = ISI
ISEED2= 1S2
RETURN

C
ENTRY RECUUT(IS1,1S2)
IS1 = ISEED1
1S2 = ISEED2
RETURN
END

L’Ecuyer gives convincingevidencethat the numbersgeneratedare very well distributed.
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3.3. RANMAR:the algorithm ofMarsaglia, Zamanand Tsang

This generator[9], is the first of a new generationof portableVLP (very long period)methods.It hasa
period of 21~ 2 X i0’~,is completelyportable,giving bit-identical resultson all machineswith at least
24-bit mantissasin the floating-point representation(i.e. all the commoncomputersof 32 bits or more). It
satisfiesvery stringenttests,eventhoughthe only precisetheoreticalunderstandingis theknowledgeof the
period. It is fast enough (somewhat faster than RANECU), largely becauseit works internally in
floating-pointrepresentation,renderedportableby clevercoding techniqueswhich are somewhatunusual,
butperfectlywell-definedFortran.

A most exceptionalpropertyof this generatoris the extreme simplicity of generatingindependently
disjoint sequences.The generatormust be initialized by giving one 32-bit integer(in the original version,
four smallerintegers),eachvalueof which givesrise to an independentsequenceof sufficient length for an
entire calculation. This meansthat in a collaborationbetweendifferent physicists,eachphysicist can be
assignedonenumberbetweenzeroand9999 as the last four decimaldigits of the initiator, andhewill be
assuredof not overlappingthe sequencesof any other,eventhoughhestill has about90000 possibilities
for the otherdigits at his disposalfor independentinitialization. That is, the programcangenerateabout
900 million differentsubsequences,eachonevery long (averagelength 1030).

On the other hand, there is a small price to pay for the exceptionally long period: The complete
specificationof the stateof the generatorat a given point (for exampleto be able to regeneratea given
event in the middle of a calculation) requires one hundredand two full words (the contentsof the
COMMON block RASET1in the listings below). This contrastswith the oneword (two words)necessary
for a MLCG of period iO~(~1018).

The algorithm is a combination of a Fibonacci sequence(with lags of 97 and 33, and operation
“subtractionplus one,modulo one”) and an “arithmetic sequence”(using subtraction).The “arithmetic
sequence”hasnot yet beenmentionedhere,becauseit is of little interestby itself, andis not usedin many
standardgenerators,but is claimed to be good enoughwhen combined with anothermethod,like the
laggedFibonacci,which is alreadyalmostgood enough.The combiningof thetwo sequencesis againdone
with the operation“subtractionplus one,moduloone”, andall operationsare carriedout in floating-point
assumingat least 24-bit mantissas.The starting table of 97 valuesis initialized using a combinationof a
laggedFibonaccimethodusingthreelags,and a MLCG using a = 53, m = 169.

The Fortrancodegiven below is essentiallythat given by Marsaglia and Zaman[9], except that the
presentversionreturnsa vectorof numbersratherthanjust one.

SUBROUTINE RANMAR (RVEC,LEN)
C Universalrandomnumbergeneratorproposedby MarsagliaandZaman
C in reportFSU-SCRI-87-50
C slightly modified by F. James,1988, to generatea vector
C of pseudorandomnumbersRVEC of length LEN
C andmaking the COMMON block includeeverythingneededto
C specifycompletelythe stateof the generator.

DIMENSION RVEC( *)
COMMON/RASET1/U(97),C,CD,CM,197,J97

C
DO 100 IVEC =1, LEN
UNI = U(197)-U(J97)
IF (UN! .LT. 0.) UNI = UN! +1.
U(!97) = UN!
197 = 197-1
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IF (197 EQ. 0)197= 97
J97= J97-1
IF (J97 .EQ. 0) J97= 97
C = C-CD
IF (C .LT. 0.) C = C + CM
UNI = UNI-C
IF (UNI .LT. 0.) UNI = UNI +1.
RVEC(IVEC) = UN!

100 CONTINUE
RETURN
END

The initialization routinegiven below is also slightly modified from the original version given in ref. [9].
(The original form of RSTART as it appearedin FSU-SCRI-87-50required four small integers for
initialisation; the adaptationgiven here and renamedRMARIN simplifies somewhatthe initialization,
acceptingoneintegerbetweenzero and 900000000 rather than four smallerintegers.)

Someimplementationhints: In the form given here,RANMAR cannotknow if RMARIN was in fact
calledto perform the necessaryinitialization. In order to remainstrictly portable,this canbe fixed only if
RMARIN is incorporatedas an entry point into RANMAR, in which case RANMAR could recognize
(throughthe useof avariable set in a DATA statement)when the userhadfailed to initialize it, and in
that caseperforman initialization with somedefaultseeds,therebymaking the generatormoreconvenient
for generalusers.The implementationof entrypoints is standardFortran 77 andportable.Note also that
if RMARIN is incorporatedasan entrypoint in RANMAR, the COMMON block is no longer needed,
but if it is removed,thosevariablesmustbe declaredin a SAVE statement.Otherpossibleimplementation
optionsincludeprovidingentrypoints for inputting andoutputtingthe entireseedtable for restarting,or a
simpler (but longer)restartingprocedurebasedon counting the numberof numbersgeneratedsince the
lastcall to RMARIN. All the abovefeaturesare incorporatedinto the codePSEUDORANdistributedby
the CPC ProgramLibrary, but only the basic ideasof the initialization are illustrated by the following
codelisting:

SUBROUTINE RMARIN(!JKL)
C Initializing routine for RANMAR, mustbecalled before
C generatingany pseudorandomnumberswith RANMAR. The input
C valueshouldbein the range:0 < = IJKL < = 900000000

COMMON/RASETI/U(97),C,CD,CM,197,J97
C This showscorrespondencebetweenthe simplified input seedIJKL
C and the original Marsaglia-ZamanseedsI,J,K,L
C To get standardvaluesin Marsaglia-Zamanpaper,
C (I = 12, J = 34, K = 56, L = 78) put IJKL = 54217137

IJ = IJKL/30082
KL = IJKL — 30082* IJ
I = MOD(IJ/177, 177) + 2
J= MOD(IJ, 177) + 2
K = MOD(KL/169, 178) +1
L = MOD(KL, 169)
PRINT ‘(A,I15,4!4)’,’ RANMAR INITIALIZED: ‘, IJKL,I,J,K,L
DO 2 II = 1, 97
S = 0.
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T=.5
DO 3 JJ = 1, 24

M = MOD(MCD(I * J,179)* K, 179)
I=J
J=K
K=M
L = MOD(53 * L + 1, 169)
IF (MOD(L * M,64) .GE. 32) S = S + T

3 T=0.5*T
2 U(II) = S

C = 362436./16777216.
CD = 7654321./16777216.
CM = 16777213./16777216.
197 = 97
J97= 33
RETURN
END

3.4. ACARRY:the algorithmof Marsaglia and Zaman

The most recenteffort of Marsaglia andfriends[13,14] is a wholeclassof VLP generatorsknown as
add-and-carry.I will refer to this classof generatorsgenericallyas ACARRY, but the particularvariation
which I proposehere is actually subtract-and-borrow,and the name of the subroutine I propose is
RCARRY. The algorithmlooks very muchlike laggedFibonacci,but with the occasionaladditionof an
extrabit, accordingto whetheror not the Fibonaccisumwasgreaterthan one.The basicformula is:

x,, = (Xn_r ±x,,_~±c) mod b

wherer> s are thelags,andc is a carry bit, equalto zero unlessthe sumwasgreaterthanb, in whichcase
it is a one in theleastsignificant bit position.The wordsize b canbe chosen= 2 in which caseit generates
randombits, or a largernumber(usually a powerof two) for generatinglonger numbers.In the example
proposedbelow,we take b = 224 to generate32-bit floating-point numberswith 24-bit mantissas.

As with the Fibonaccimethod, r ands are chosenfrom a set of magicnumbersfor which the methodis
known to yield a very long period. And this algorithm also requires storing the previous r seeds.For
b = 224, a convenientchoice is r = 24, s= 10, which gives a period only a factor of 48 smaller than the
numberof different statesthat can be representedby 24 24-bit numbers,which is (224)24 That is, the
period for the generatorgiven below is 2570 or 10171. The stateof the generatorat any time can be
specifiedby the valuesof 24 24-bit integersplus two small integersandthe valueof the carry bit, which
caneasily be packedinto a 25thword.

Only the generatorproper is shown below. In addition, it is necessaryto initialize the vectorof 24
floating-point seedsas well as the two indices 124 and J24, as in RMARIN, and the starting value of
CARRY mustalso be initialized, but it canbe startedwith zero. The codePSEUDORANdistributedby
the CPC ProgramLibrary performs also the initialization and offers entry points for inputting and
outputtingthe stateof the generatorat a given time. The normal initialization is eitherby default(which
will of coursealways yield the samesequence)or by inputting an integer (24 bits or less) eachvalue of
which startsa verylong (~‘10160) subsequencewhich will not overlapwith any other.

SUBROUTINERCARRY (RVEC,LENV)
C PortablePseudorandomNumberGeneratorwith periodof
C about(1/48) * (2 * * 24) * * 24 = 2 * * 570 = 10 * * 171
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C author: F. James,CERN, 1989
C algorithmdueto: G. Marsagliaand A. Zaman
C

DIMENSION RVEC(LENV)
DIMENSION SEEDS(24)
PARAMETER (TWOP24= 16777216.)
PARAMETER(TWOM24 = 1./TWOP24)

C the basicgeneratoralgorithmonly
DO 100 IVEC =1, LENV
UNI = SEEDS(124)— SEEDS(J24)— CARRY
IF (UNI .LT. 0.) THEN

UNI = UNI + 1.0
CARRY = TWOM24

ELSE
CARRY =0.

ENDIF
SEEDS(I24)= UNI
124 = 124 — 1
IF (124 .EQ. 0)124 = 24

J24= J24— I
IF (J24 .EQ. 0) J24= 24
RVEC(IVEC) = UNI

100 CONTINUE
RETURN
END

4. Conclusions

4.1. Timing

The timesgiven in table 1 are for Fortranloops calling the indicatedgeneratoralone.For RANECU,
RANMAR andRCARRY, two timesare given: onefor onecall returning1000 numbers,andthe otherfor
1000 calls returningone numbereach.The othergeneratorscanonly return one numberper call, so the

Table I
Pseudorandomnumbergenerationtime

Generator log
2 Time in ~s per randomnumber

penod Cray IBM Vax Apollo Apollo

X-MP 3090 8800 10000 3500

RNDM 30 2.0 0.7 7.0 2.4 30.0
RN32 30 2.0 2.6 5.0 2.4 42.0
MTH$RANDOM 30 - - 5.0 - -

RANF 46 0.07 — — — —

Super-Duper 60 — 1.3 — — —

RANECU(1000/call) 60 2.5 2.6 9.0 5.5 71.0
RANECU(1/call) 60 4.1 4.5 16.0 7.0 84.0
RANMAR (1000/call) 144 1.1 1.2 5.0 3.4 130.0
RANMAR (1/call) 144 4.5 3.4 12.0 9.1 148.0
RCARRY(1000/call) 568 0.8 0.8 3.0 2.0 46.0
RCARRY(1/call) 568 2.7 3.1 15.0 4.8 65.0
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Table 2
Propertiesof somePseudorandomNumberGenerators

Generator Randomness Portability Approx. Neededto Neededto Disjoint
period initialize restart sequences,

lwdl [wdl no.x length

traditional unreliable poor 10~ 1 1 sequential
super-duper acceptable none 1018 2 2 sequential
RANECU good good i0

18 2 2 (10~x109)a>
RANMAR good good io~~ 1 100 iü~X1034
RCARRY good good 10170 1 25 x 10’~

a> RANECU can makeindependentsubsequences,but not conveniently.

timesare given for 1000 calls. The timesgiven are not accurate(or evenrepeatable)to morethan about
10%. Super-duperis in IBM assembleronly. Theimplementationof RNDM (CERN ProgramLibrary) is
verycomputer-dependent,but timesare given to allow usersto comparewith ageneratorwhich they may
alreadybeusing.RN32[8] is a nearlyportableFortranfunction generatingthe samenumberson different
machines.

The Fortrancodefor RANECU, RANMAR, andRCARRY wasabsolutelyidenticalon all machines,
and no attempt was made to optimize the code for any particular computer (on some computers,
considerableimprovementin speedcan be attainedby customizingthe code,but our goal hereis rather
portability). It canbe seenthat in mostcasesthereis notmuchdifferencein timing from onegeneratorto
another, the major exceptionbeing RANF which is exceptionally fast becausethe Fortran compiler
producesin-line object code. The bettergeneratorsare not much slower(and in somecasesquite a bit
faster!) than the mediocreones,and a factor of two or threecan usually be gainedby returningseveral
numbersin onecall.

4.2. Summaryof basicproperties

The most importantpropertiesof both traditional andnewerrecommendedpseudorandomgenerators
can be summarizedin table2. All generatorsproduce32-bit floating-point numbersuniformly distributed
betweenzero andone.Theunit “1 wd” meansone32-bit word. The figuresgiven aspowersof ten are only
approximate.

4.3. Other considerations

4.3.1. Higher precisionor shorter word length
The particular algorithmsgiven here are for computerswith word length of 32 or more bits, where

32-bit precisionis assumedto besufficient. If higherprecisionis required(this shouldbe very rare),then
all of the algorithmsmustbe extendedto producelongernumbers.For the MLCG, whichworks internally
with integerarithmetic, onemustnot only find multipliersappropriatefor largerbases,but also usetricks
like the one shown here to do extra-lengthintegerarithmetic and floating-point conversion.Algorithms
baseddirectly on floating-point arithmetic are simpler to extend, since doubleprecision floating-point
arithmetic is standardin Fortran.

For 16-bit computers,l’Ecuyer [4] gives a good algorithmbasedon threeseeds.

4.3.2. Exactzeros
The routinesRANMAR andRCARRY producefloating-point numbersin the rangefrom zero to one,

excludingone,but including exactzeros.Although zerosoccuron averageonly onceper 224 numbers,they
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may be highly bothersome,especiallyif the subsequentcalculationsinvolve for example taking the
logarithmof the randomnumber. In addition, the resultsmay be sensitiveto the fact that no numberwill
be generatedbetweenzero and 2 24 Both theseproblems may be solved elegantly by the following
technique.

• Just beforethe statementRVEC(IVEC) = UNI, include the following code:

IF (UNI .EQ. 0.) THEN
UNI = U(J97)* 2 * * — 24 ! (for RANMAR)

or UNI = SEEDS(I24)* TWOM24 ! (for ACARRY)
IF (UNI .EQ. 0.) UNI = 2 * * — 48

ENDIF

This producesa uniform distribution of numbersbetween2 ~ and2 24, with no numberssmallerthan
2

4.4. Recommendations

1. Old-fashionedgeneratorslike RNDM, RN32, MTH$RANDOM, SURAND, and RANDU should
bearchivedandmadeavailableonly upon specialrequestfor historicalpurposesor in situationswherethe
userreally wants a bad generator.The userwho is not surewhat he needsshould not by default get a
generatorknown to be deficient.

2. The standardform for apseudorandomnumbergeneratorshouldbea subroutinereturningan array
of randomnumbersratherthana function returningonenumber.This is mainly for efficiency, but is also
good Fortran programming, since random number generatorsalways have side effects and are not
thereforetrue Fortranfunctions.

3. RANECU, RANMAR andACARRY shouldbe availableat all computercentres,andthe“default”
generator,whereoneis provided,shouldbe oneof these.That is, evenuserswho persistin an old calling
sequencesuch as RR = RNDM(DUMMY) shouldnow get numbersproducedby a moderngenerator
unlessthey invokea speciallibrary which may providehistorical numbers.

4. If computer time for randomnumbergenerationis critical, use a generatorcodedor compiled
in-line.
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